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The effect of work-hardening upon the 
hardness of solids: minimum hardness 

A. P. GERK 
Cavendish Laboratory, Madingley Road, Cambridge, UK 

It is suggested that the hardness of many solids may approach a minimum value which the 
material can attain through glide processes. This occurs when the effective yield stress of 
the material is very low or the dislocation glide mobility very high. The minimum value of 
the hardness is a result of the work-hardening characteristics of the indented material. For 
many materials, such as fc c metals, NaCI-type alkali halides or diamond cubic solids, the 
minimum hardness may be calculated by use of a simple model and its magnitude is 
shown to agree well with that expected from the rate of second stage work-hardening in 
these solids. 

1. Introduction 
For a perfectly plastic-rigid solid the theory of 
hardness indentation is relatively simple. An im- 
portant conclusion of the theory is that the hard- 
ness, or the average pressure under an indenter, 
is a constant factor of the yield stress [ 1]. When a 
Knoop or Vickers diamond indenter is used, this 
factor, known as the Tabor relation, is very close 
to three. This number has been routinely used in 
practice for many years to characterize engineer- 
ing materials. It is only under very special circum- 
stances, however, that real materials deform in a 
manner which can be approximated by a perfectly 
plastic-rigid solid. Therefore, it is not unexpected 
that measurements of hardness: yield stress ratios 
have often been found to vary widely. 

Upon indenting such materials as perspex or 
nylon, for example, one discovers that the ratio of 
Vickers hardness to yield stress is much less than 
that of the Tabor relation [2]. The deviation of 
these solids from perfectly plastic-rigid behaviour, 
however, has been previously discussed and is well 
understood. The ratio of yield stress to elastic 
modulus in perspex and nylon is very high. Under 
an indenter, the portions of the displacement attri- 
butable to plastic and elastic deformation become 
comparable and the morphology, or mode of 
deformation under the indenter changes from that 
expected for a perfectly plastic-rigid solid to one 

reminiscent of radial expansion. Johnson [3] has 
shown that the average indentation pressure can 
then be predicted by a comparison of the indenta- 
tion process to the expansion by internal pressure 
of a void in an infinite, elastic-plastic medium. 

A more important type of discrepancy between 
observed hardness values and the Tabor relation, 
however, is found if one measures say the Vickers 
hardness of a high purity, well annealed metal, or 
a good quality single crystal. For example anneal- 
ing a fully work-hardened f c c  metal such as 
copper may reduce the room temperature hardness 
to a value of the order of 10 -2 times the shear 
modulus; whereas the yield stress of the solid may 
be much lower than 10 -4 times the shear modulus 
so that the hardness is a hundred times greater 
than the yield stress. Similar behaviour is also 
found for rock salt. Almost twenty years ago West- 
brook [4] pointed out that for many of these single 
crystals the ratio of  hardness to yield stress could 
be as high as 35. More recently, careful measure- 
ments by Chin et  al. [5] of both hardness and 
yield stress for several alkali halide single crystals 
in which the yield stress was controlled by solute 
additions have shown that as the yield stress is 
reduced, the hardness, in fact, approaches a 
constant value. 

In both of these examples, the deviation of the 
behaviour of the material from the Tabor relation 
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is the result of  the appreciable work-hardening 
which occurs during the initial stages of plastic 
deformation under the indentor. The fact that the 
work-hardening influences the measured hardness 
value of a well annealed, high purity f c c  metal 
has been suggested, for example, by Gilman [6], 
but the form of this influence and its applicability 
to a wide variety of solids have not previously been 
understood. Attempts to incorporate work-harden- 
ing into a slip-line analysis or an elastic-plastic 
type analysis using finite element methods have 
been made but generally prove to be inflexible. 
The empirical analysis of Atkins and Tabor [7] in 
which a representative strain is assigned to a 
particular shaped indentor, has been successfully 
used for many years to characterize work-harden- 
able materials but such approaches do not lead to 
a fundamental understanding of the problem. It 
is shown below that in many limiting cases the 
effect of work-hardening upon the indentation 
process can be explained in very simple terms and 
that in these cases the hardness provides basic 
information concerning the work-hardening 
characteristics of such solids. 

2, The minimum hardness 
In many instances the stress-strain curve of a 
plastically deforming solid takes on a very simple 
form. For a high purity, well annealed solid at a 
temperature below which an appreciable amount 
of diffusional creep would be expected, one finds 
that over a large interval of strain, an approxi- 
mately linear relationship between true stress and 
true strain exists. This behaviour can easily occur 
over the 10 or 20% true strain which is thought to 
be the maximum found under a Vickers indentor. 
The slope of the true stress, true strain relation 
under these conditions is the rate of hardening 
during stage two deformation, 

Oii = G/A. 

(The strain under an indentor is very complicated 
and involves considerable shear therefore even for 
a single crystal one would expect an absence of 
appreciable stage one deformation.) If the yield 
stress of the material is very small and we consider 
the material to deform in a plastically isotropic 
manner, we can then obtain an approximation to 
the plastic indentation problem by replacing the 
elastic constants of the known elastic solution 
with the linear plastic constant, 0n. The elastic 
solutions to both the wedge and cone indentation 
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problem are identical and with the use of the 
constant A, the average indentation pressure, H, 
in the plastic problem is given by 

H = (2 tanf3)G/A (1) 

where G is the shear modulus, A the hardening 
constant, ~ the angle between the indentor and the 
indented surface, and the effective Poissons ratio 
is taken as one-half. 

The value of the hardness predicted above 
represents a time independent minimum hardness 
which a wolid approaches when the yield stress is 
very small. The hardness can, in fact, be less than 
this minimum time independent value but diffu- 
sional creep (stage three deformation) would be 
required and the hardness would become time 
dependent. I f  the indentation process is controlled 
not by the minimum stress required for long range 
dislocation motion (the yield stress) but by the 
dynamic process of  the growth of a plastic zone 
around an indentation, as is the case when dis- 
location mobility is very low, the hardness is 
again time dependent; in this instance it is of a 
greater value than the minimum hardness, even 
though the effective yield stress is very small. 

3. Discussion 
The dimensionless factor A in Equation 1 for 
many solids has been found to be a constant of 
the order of 200. This includes such materials as 
the fc c metals, NaCl-structure alkali halides, and 
diamond cubic structure solids such as Ge, Si and 
diamond. The hardness of many such materials is 
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Figure 1 A comparison of the minimum hardness of many 
fcc metals, NaCl-structure alkali halides, and diamond 
cubic solids with their respective isotropic shear modulus, 
G. 



compared with their shear moduli in Fig. 1. The 
value of the parameter A determined from the 
solid line drawn through these data using Equation 
1 is in agreement with observed hardening rates in 
pure compression experiments. 

A word must be said about the hardness values 
chosen for the preparation Of Figure 1. For the 
fc c metals, the data of Fig. 1 represent the mini- 
mum room temperature values reported from 
various sources for high purity material. For these 
solids, room temperature is less than about one 
half the melting point. At temperatures above 
about one-half the melting point for fc  c metals, 
diffusional creep makes a significant contribution 
to the material's plasticity. Atkins et al [8], while 
studying the time dependence of hardness in a 
number of these solids, found that the rate of 
change of the hardness with time was an increasing 
function of temperature which could be correlated 
with the activation energy of self-diffusion in the 
materials. Upon extrapolating the hardness back to 
zero time, however, they found that the short-time 
hardness approached a constant value independent 
of temperature. This would be the minimum glide 
hardness described by Equation 1. 

In NaC1 structures at room temperature, the 
yield strength and, therefore, the hardness is very 
sensitive to the defect concentration of the crystal. 
As the defect concentration is reduced the yield 
strength is reduced but the hardness approaches a 
minimum value [5]. This minimum value has pre- 
viously been attributed to such mechanisms as the 
electrostatic faults that exist at the cores of {t 0 0} 
(1 t 0) dislocations [9] or the energy of formation 
of Schottky defects [10]. This paper, however, 
suggests that it is simply due to the work-hardening 
characteristics of the material. 

For the diamond cubic materials Ge, Si and 
diamond, the room temperature hardness may not 
be a result of the normal plastic flow process as 
found, for example, in metals and alkali halides, 
but a critical pressure (or stress) dependent mech- 
anism thought to be either the pressure dependent, 
semiconductor-to-metal phase transformation or 
athermal flow over the extremely strong Peierls 
barriers of these solids. Gerk [11] has shown that 
as the temperature is increased above about half 
the melting point, however, the hardness starts to 
rapidly decrease and becomes strongly time depen- 
dent. The hardness in this range is controlled by 
the low mobility growth of a plastic zone surround- 
ing the indentation. As the temperature is further 

increased, dislocation mobility becomes high, the 
yield strength becomes very low, and the hardness 
approaches the constant, relatively time indepen- 
dent value which was used in the preparation of 
Fig. 1. These values are those measured at 800, 
1000 and 1500~ respectively for Ge, Si and 
diamond. Diffusional creep is present at these tem- 
peratures as reflected in the minor time dependence 
of the hardness present; however, it is not thought 
to be a large factor in determining the hardness. 

In view of the complicated nature of both the 
indentation process and second stage work-harden- 
ing, the degree of scatter in Fig. 1 is considered 
well within acceptable limits. Inaccuracies in the 
measured hardness values of the wide variety of 
materials used in Fig. 1 and the neglect of both 
plastic and elastic anisotropy by the use of a 
constant A and the average shear modulus will 
most likely account for the major portion of the 
scatter. The effect of anisotropy in the work- 
hardening coefficient can, in fact, be illustrated 
with the help of the alkali halides data in which 
the minimum hardness values are thought to be 
most accurately known. Second stage work- 
hardening in the NaCl-structure solids is thought 
to assume a much simpler macroscopic form than 
is the case for, say, the fc c metals. The dominant 
slip system in these materials is the (110) {1 TO} 
which possesses only two independent slip systems. 
During the general deformation which occurs 
under an indentor, three more independent slip 
systems would be required. These are supplied by 
the (110) {001 } system. The presence of (1 ! 0) 
{001 } slip during second stage work-hardening is 
well known and has been confirmed both by elec- 
tron microscopy and slip-trace techniques for 
many of the NaC1 alkali halides [12]. Second stage 
work-hardening may then be expected to reflect 
the long range elastic interaction between these 
systems. If one considers the long range elastic 
glide interaction forces between, say, a [110]  
(1 i-0) screw dislocation and (1 t0)  {001} type 
dislocation, most of the forces are proportional to 
an average elastic constant given by 

G ' = C ~  
[(C11 - C12)/2 C44 ] 

1 + [(Cil -- Ca~)]2C44] 

This is the modulus which should be used in con- 
sidering the alkali halides' minimum hardness 
rather than the isotropic shear modulus (Fig. 2). 
It is interesting to note that the LiF point which 
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Figure 2 A comparison of the minimum hardness of NaC1- 
structure alkali halides with the average elastic coefficient, 
G ', described in text. 

was over a factor o f  two greater than the straight 
line value of  Fig. 1 now agrees well with the rest o f  
the alkali halide data of  Fig. 2. 

4. Conclusions 
The assumption that the indentation hardness is 
three times the yield stress is valid only for a 
perfectly plastic solid. If  the yield stress is compar- 
able to the elastic modulus, the ratio can be much 
less than three. If  the material work hardens 
appreciably, the ratio can be much greater than 

three. 
In materials which work-harden the hardness 

approaches a minimum value when diffusional 
creep is not significant. This minimum value can 
be predicted by replacing the elastic constants o f  
the elastic solution for wedges or cones by the rate 
o f  work-hardening. In many solids, including fc  c 
metals, NaC1 alkali halides, and the diamond cubic 
crystals, the rate of  second stage work-hardening 
can be described by On = G/A where A is found to 

be roughly constant. The minimum hardness of  
these solids, therefore, when plotted against their 
shear modulus, falls about the same line. 

The amount of  scatter in such a comparison can 
be greatly reduced when the details of  work- 
hardening are considered. For example, for the 
NaCl-structure alkali halides, the rate of  second 
stage work-hardening is not proportional to the 
isotropic shear modulus but to an appropriate 
average of  the anisotropic moduli representing the 
glide interaction forces between (1 1 O) {i TO} and 
(1 1 O) {0 0 1 } dislocations. 
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